
Vindhya International Journal of Management & Research (VIJMR), Vol. 1 Issue. 1 March 2015 ISSN (Online): 2395-2059

1

FPGA Implementation of Adaptive Cordic

Algorithm using HDL

Mr.Ashish S.Khachane1

ResearchScholar,JDCOEM,Nagpur.

 Email Id: ashish.khachane@gmail.com

Dr. Pramod B.Patil 2
CEO and Principal,CICET, Nagpur.

Email Id: ppamt07@ gmail.com

Prof.Bharti Masram3
Research Scholar,JDCOEM, Nagpur.

Email Id: bharatimasram@gmail.com

Abstract: In the evaluation of a wide variety of

elementary functions, the CORDIC algorithm plays a vital

role. It is a simple and well-designed method, but it suffers

from long latency. The Adaptive CORDIC Algorithm is able

to reduce the number of iterations by more than 30 percent,

but its implementation in hardware consumes a large

increase in cycle time, to accommodate its complex angle

selection function. This restricts its use to those cases where

the angle of rotation is fixed and known in advance, so that

the angle selection can be performed offline. This paper

presents the FPGA implementation of adaptive CORDIC

algorithm using HDL with the help of Xilinx14.7 and

Quartus9.1 Softwares. The method also has the advantage

that all the angle constants are found in parallel, in a single

step, by testing only the initial rotation angle, without

having to perform successive CORDIC iterations. This

dynamic Angle Recoding method can be formulated to use

“sections,” to limit the number of range Comparators

needed, to a reasonable value. There is an increase in the

number of adaptive CORDIC iterations needed, but this

problem can be mitigated by using a buffer in conjunction

with the method of sections.

Index Terms— Adaptive CORDIC Algorithm, Latency,

Angle Recoding Method.

I. INTRODUCTION

The coordinate rotation digital computer (CORDIC) is an

efficient iterative algorithm which can be used to

compute several elementary functions. It was proposed

by Volder in 1959 [1], and later extended by Walther [2]

to encompass circular, linear, and hyperbolic coordinate

systems. The algorithm is commonly used to evaluate

elementary functions as well as perform rotations in a

variety of applications. However, it suffers from the

problem of long latency. The Angle Recoding method [3]

applied to CORDIC reduces the number of iterations, but

the implementation of its angle selection function in

hardware requires a large increase to the cycle time, thus,

reducing its efficiency. This paper presents a simpler

angle selection function for the Angle Recoding method

which does not require the cycle time to be increased but

still achieves the advantages of the reduction in iteration

count. The technique is named ‘Adaptive CORDIC’.

BASIC OF CORDIC ALGORITHM

CORDIC algorithm is derived from the general equations

of vector rotation. Vector rotation can also be used for

polar to rectangular and rectangular to polar conversion,

for vector magnitude and as a building block in certain

transforms such as the DFT and DCT [5]. The CORDIC

algorithm provides an iterative method of performing

vector rotation by arbitrary angle using shift and adds.

The algorithm credited to Volder is derived from the

general rotation transform. If a vector V with co-

ordinates (x,y) is rotated through an angle Ø then a new

vector V’ can be obtained with co-ordinates (x’,y’)

where x’ and y’ can be obtained using x , y and Ø by

the following method as shown in Fig.1.

X=rcosθ,y=rsinθ -------------------------------(1)

Fig 1 Rotation of a Vector V by the angle Ø

V’ came into picture after anticlockwise rotation by an

angle Ø. From Fig.1, it can be observed Θ’-θ=Ø

Therefore,

 ………………..…(2)

Fig 2 Vector V with magnitude r and phase θ

The Original CORDIC algorithm is specified by the

following iterative equations, with N denoting the

number of iterations:

Vindhya International Journal of Management & Research (VIJMR), Vol. 1 Issue. 1 March 2015 ISSN (Online): 2395-2059

2

(ɣi=0,1,…..N)

Xi+1=Xi-mσi2-S(m,i)Yi

Yi+1=Yi + σi2S(m,i)Xi ……………….…(3)

Zi+1=Zi-σiαm,i

The parameter “m” denotes the coordinate system, i.e.

circular (m=1), linear (m=0), or hyperbolic (m= -1). Two

operational modes are possible, rotation and vectoring,

but this paper is only concerned with the rotation mode

where the initial position of the vector (X0; Y0) and the

angle through which to rotate it (θ) are known, and the

final coordinates of the target vector are to be

determined. The goal is to reduce the residual angle (Zi)

to 0 through the use of appropriate values of the rotation

direction . σi=sign(Zi)

The predetermined pseudo rotation angles α(m,i),

sometimes known as angle constants or Arc Tangent

Radices (ATR), are given by:

II. LITERATURE REVIEW OF LOW LATENCY CORDIC

TECHNIQUES

The shift sequences is given by:

S(m,i)=0,1,2,3,4,5,………………..N if m=1

 =1,2,3,4,5,6,.........................N if m=0

 =1,2,3,4,5,…………………...;N if m=1;

 repeats at (3i+2-1)/2

A scaling factorki is associated with the ith iteration step.

The scaling factors are usually combined together and

applied cumulatively as a total scaling factor K (for the

N iterations) given by:

The total scaling factor may be applied either at the start

or at the end of the algorithm. As long as a rotation is

performed on every iteration, K is a constant that is

determined solely by the number of iterations, N. A fixed

value for K eliminates the need for a ROM in which to

store the different scaling factors for every possible

angle.

 The latency of an iterative algorithm like CORDIC is

determined by the product of the number of iterations

times the cycle time of each iteration. The Original

CORDIC algorithm exhibits high and constant latency

since the algorithm always requires a fixed number of

iterations and there is no facility for early termination.

There have been several methods proposed by

researchers in an effort to reduce the overall latency of

the algorithm. Huand Naganathan [3] propose the Angle

Recoding method which can reduce the number of

iterations by more than 50 percent—however, the angle

selection function that is used is very complex, and in

order to avoid impacting the cycle time, it is restricted to

applications where the rotation angles are fixed and

known a priori, so that the Angle Recoding can be done

offline. In [4], an angle selection function inspired by

control theory is presented which can be used

dynamically with any rotation angle, but the savings

obtained in iteration count is not as high as that of the

Angle Recoding method.

Another method of reducing the number of iterations is to

use a higher radix number system, such as a minimally

redundant radix-4 number system [5], [6], where�i can

take on values off�2;�1;0;1;2g. The number of

iterations is reduced, because more bits of the result are

produced in each iteration. The cycle time needs to be

increased because of the additional effort to identify the

correct value of�i from among the five possible values.

Duprat and Miller [7] take the tack of reducing the cycle

time of a CORDIC iteration by using fast adders, based

upon the use of redundant arithmetic to express the

operands. The method proposed by Phatak [8] is able to

execute two consecutive pseudorotations in the same

cycle. It does this by examining a sliding window of six

digits of the residual angle at a time, to predict the values

of�i and�iþ1. In the Hybrid CORDIC [9] method, if

m=ceilðN=3Þ, it is shown that after the first miterations

have been executed sequentially, the residual angle that

remains can be used to predict the rotation directions of

the remaining N-miterations (roughly 2=3�N) in

parallel. These iterations are then to be executed using

the method shown in [10] or else by using some type of

combined or pipelined architecture [11]. The first

miterations can be speeded up by using the method

proposed by Arbaugh [12] in which the rotation angle is

used as an index into a ROM lookup table which

provides two multiplication factors. The rotation of the

vector is then performed by multiplying these factors by

Vindhya International Journal of Management & Research (VIJMR), Vol. 1 Issue. 1 March 2015 ISSN (Online): 2395-2059

3

the initial coordinates (x0,y0) of the vector to be rotated,

in a standard multiplier.

In the Para-CORDIC method [13] the sign of the first m

iterations is predicted in parallel using the binary-to-

bipolar recoding on the first m bits of the rotation angle.

In the P-CORDIC method [14], a preliminary step is used

to predict the rotation directions, by adding a constant as

well as a variable offset (obtained from a ROM) to the

rotation angle, and then using a fast adder to obtain the

required binary representation of the rotation directions.

The knowledge of the rotation directions is used to

perform more than one pseudo rotation in an iteration. In

this paper, attention is focused mainly on techniques that

reduce the number of iterations, while keeping the cycle

time unchanged. An example of the Original CORDIC

method is presented in this section. Some of the

deficiencies of this method are pointed out, which are

then addressed by Control CORDIC [4] and the Angle

Recoding method [3].

Original CORDIC—Rotation through 25 Degrees

Consider the rotation of a vector from the x-axis through

an angle of, e.g., 25 degrees. Assuming that the rotation

is to be accomplished in nine iterations (i.e. ,N=0...8), the

set Q of predetermined angle constants that are used is as

follows :

Q= {450, 26.5650 , 14.0360 ,7.1250 ,3.5760 ,1.790, 0.8950,

0.4480,0.22380}

In the Original CORDIC method, the rotation through 25

degrees is carried out by the following sequence of

angular steps or pseudorotations, that add up to

approximately 25 degrees, as shown on Fig. 1:

250= {+450 - 26.5650 + 14.0360 - 7.1250 - 3.5760 +1.790 +

0.8950 + 0.4480 + 0.22380}

 = 25.12680.

Even though the algorithm as a whole converges,

individual intermediate pseudo rotations may diverge,

and must be corrected by succeeding pseudo rotations.

For example, the iteration from i=2 to i=3is a divergent

pseudo rotation

Angle Recoding Method—Rotation through 25

Degrees

The Angle Recoding method proposed by Hu and

Naganathan [3] is a more aggressive algorithm. It

eliminates divergent pseudo rotations and makes every

effort to converge to the final target in the least number

of iterations. At every iteration, the angle constant (�)

that will bring the residual angle (Zi) closest to 0 is

chosen from the set of available angle constants. For

example, rotation through

25 degrees in Fig. 1,

250= (26.5650 -1.790 + 0.22380)

=24.99880.

This method results in a reduction of more than 50

percent in the number of iterations needed. Its greatest

disadvantage, however, is that the function used to select

the angle constant is very complex. Its implementation

requires the cycle time to be increased considerably(>2x).

It is, therefore, most attractive in static cases where the

rotation angleθ is fixed and known a priori. The selection

of the angle constants can be done offline, and the angle

constants saved in a Look-Up Table.

Fig. 3. Angle selection in the Angle Recoding method.

III. ADAPTIVE CORDIC TECHNIQUE BY DYNAMIC

ANGLE SELECTION

There is a strong motivation to investigate the use of

dynamic angle selection techniques for Angle Recoding,

because they can reduce the iteration count by more than

50 percent, for any arbitrary rotation angle (not only

those that are known a priori). A straightforward

implementation of the Angle Recoding method in

hardware is presented first. It requires a large increase in

cycle time that makes its use in dynamic situations

untenable. Then the Parallel Angle Recoding method is

presented that performs the angle selection using a much

simpler preparatory step, without having to modify the

logic used in each iteration (thus requiring no change in

the cycle time).

Direct Hardware Implementation Of ADAPTIVE

CORDIC Angle Recoding

The Angle Recoding method can be implemented in

hardware if all the angle constants (α’s) are tested in

parallel, rather than serially as in the original algorithm.

Fig. 3 shows the original Angle Recoding method and

Fig. 4 shows the logic needed to implement it, so that it

can handle any rotation angle dynamically. The residual

angle Zi is passed to adder-subtractor units that compute

the difference quantity (Zi-σiαi) for each angle constant

Vindhya International Journal of Management & Research (VIJMR), Vol. 1 Issue. 1 March 2015 ISSN (Online): 2395-2059

4

αi. The differences are then compared against each other

using a binary-tree like structure, to find the smallest

difference. The corresponding angle constant is selected

and the index i of the angle constant (satisfying tan(α)=2-i

) then determines the shift amount to be used. It is only

then that the X and Y coordinates of the vector are

updated. The adder-subtracters and binary tree

comparison unit that are used in every iteration is on the

critical path and greatly increases the cycle time. This

mitigates the gains that accrue from the reduction in

iteration count, leaving the latency unchanged or even

larger than before.

Fig. 4. Hardware implementation of the Angle Recoding

method.

IV. RESULT

Fig. 5. Design Flow Summary

Fig. 6 Folded RTL View Of Adaptive Cordic Technique

Fig. 7 Unfoled RTL View Of Adaptive Cordic Technique

Fig. 8 SRAM Object File Of Adaptive Cordic Architecture

Vindhya International Journal of Management & Research (VIJMR), Vol. 1 Issue. 1 March 2015 ISSN (Online): 2395-2059

5

Fig. 9 Simulation Result

V. CONCLUSION

The Angle Recoding method in CORDIC, reduces the

number of iterations needed by more than 50 percent, but

its use is restricted to applications where the rotation

angle is known a priori. In order to apply the Angle

Recoding method to arbitrary rotation angle, the angle

selection component of the method must be simplified so

that it can be implemented without requiring a large

increase in cycle time. This paper has presented the

Parallel Angle Recoding method that provides a simple

way to identify the angle constants used in the Angle

Recoding of arbitrary rotation angles. Several contiguous

ranges are identified that are associated with each angle

constant. By comparing the incoming rotation angle

against these ranges, all the angle constants used in the

Angle Recoding can be identified in a single step. The

number of range comparators needed can be reduced by

using the method of sections, but it does add some

overhead cycles to the Adaptive CORDIC iteration count.

The problem can be alleviated considerably by using a

buffer in conjunction with sections. The buffer reduces

the number of overhead cycles by allowing independent

sections drawn from different rotation angles to follow

each other through the pipeline. It also allows the

compensation of the scaling factor to be carried out in

parallel with the CORDIC iterations. The method can

reduce the number of iterations needed, without requiring

any increase in cycle time, it does, however, incur the

overhead of the comparison logic.

VI. ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referees

for their constructive comments.

VII. REFERENCES

[1] J.E. Volder, “The CORDIC Trigonometric Computing

Technique, “IRE Trans. Electronic Computers,vol. EC-8,

pp. 330-334, 1959.530 IEEE TRANSACTIONS ON

COMPUTERS, VOL. 59, NO. 4, APRIL 2010Fig. 18.

Latency as a function of section count, forN=8.Fig. 19.

Latency as a function of section count, orN=16.Fig. 20.

Latency as a function of section count, forN¼24.Fig. 17.

Pipeline stall in cycle 6 because no angle constants

werechosen from sectionSw.

[2] J.S. Walther, “A Unified Algorithm for Elementary

Functions,”Proc. Spring Joint Computer Conf.,vol. 38, pp.

379-385, 1971.

[3] Y.H. Hu and S. Naganathan, “An Angle Recoding Method

forCORDIC Algorithm Implementation,”IEEE Trans.

Computers,vol. 42, no. 1, pp. 99-102, Jan. 1993.

[4] S. Wang and E.E. Swartzlander, Jr., “Critically Damped

CORDIC Algorithm,”Proc. the 37th Midwest Symp.

Circuits and Systems,pp. 236-239, Aug. 1994.

[5] E. Antelo, J. Villalba, J.D. Bruguera, and E.L. Zapata,

“High Performance Rotation Architectures Based on the

Radix-4 CORDIC Algorithm,”IEEE Trans. Computers, vol.

46, no. 8,pp. 855-870, Aug. 1997.

[6] C. Li and S.G. Chen, “A Radix-4 Redundant CORDIC

Algorithm with Fast on-Line Variable Scale Factor

Compensation,”Proc. Int’l Symp. Circuits and Systems,pp.

639-642, June 1997.

[7] J. Duprat and J. Muller, “The CORDIC Algorithm: New

Results for Fast VLSI Implementation,” IEEE Trans.

Computers, vol. 42, no. 2, pp. 168-178, Feb. 1993.

[8] D.S. Phatak, “Double Step Branching CORDIC: A New

Algorithm for Fast Sine and Cosine Generation,”IEEE

Trans. Computers,vol. 47, no. 5, pp. 587-602, May 1998.

[9] S. Wang, V. Piuri, and E.E. Swartzlander, Jr., “Hybrid

CORDIC Algorithms,”IEEE Trans. Computers,vol. 46, no.

11, pp. 1202-1207,Nov. 1997.

[10] D. Timmermann, H. Hahn, and B.J. Hosticka, “Low

Latency Time CORDIC Algorithms,”IEEE Trans.

Computers,vol. 41, no. 8, pp. 1010-1015, Aug. 1992.

[11] S. Wang, V. Piuri, and E.E. Swartzlander, Jr., “A Unified

View of CORDIC Processor Design,”Proc. Midwest Symp.

Circuits and Systems,1996.

[12] J.A. Arbaugh, “Table Look-Up CORDIC : Effective

Rotations Through Angle Partitioning,” PhD dissertation,

Univ. of Texas at Austin, 2004.

	I. Introduction
	BASIC OF CORDIC ALGORITHM
	(ɣi=0,1,…..N)
	There is a strong motivation to investigate the use of dynamic angle selection techniques for Angle Recoding, because they can reduce the iteration count by more than 50 percent, for any arbitrary rotation angle (not only those that are known a priori...
	IV. Result
	Fig. 5. Design Flow Summary
	Fig. 6 Folded RTL View Of Adaptive Cordic Technique
	Fig. 7 Unfoled RTL View Of Adaptive Cordic Technique
	Fig. 8 SRAM Object File Of Adaptive Cordic Architecture
	Fig. 9 Simulation Result

	V. Conclusion
	VI. Acknowledgements
	VII. References

