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Abstract: In the evaluation of a wide variety of 

elementary functions, the CORDIC algorithm plays a vital 

role. It is a simple and well-designed method, but it suffers 

from long latency. The Adaptive CORDIC Algorithm is able 

to reduce the number of iterations by more than 30 percent, 

but its implementation in hardware consumes a large 

increase in cycle time, to accommodate its complex angle 

selection function. This restricts its use to those cases where 

the angle of rotation is fixed and known in advance, so that 

the angle selection can be performed offline. This paper 

presents the FPGA implementation of adaptive CORDIC 

algorithm using HDL with the help of Xilinx14.7 and 

Quartus9.1 Softwares. The method also has the advantage 

that all the angle constants are found in parallel, in a single 

step, by testing only the initial rotation angle, without 

having to perform successive CORDIC iterations. This 

dynamic Angle Recoding method can be formulated to use 

“sections,” to limit the number of range Comparators 

needed, to a reasonable value. There is an increase in the 

number of adaptive CORDIC iterations needed, but this 

problem can be mitigated by using a buffer in conjunction 

with the method of sections. 

Index Terms— Adaptive CORDIC Algorithm, Latency, 

Angle Recoding Method. 

I. INTRODUCTION  

The coordinate rotation digital computer (CORDIC) is an 

efficient iterative algorithm which can be used to 

compute several elementary functions. It was proposed 

by Volder in 1959 [1], and later extended by Walther [2] 

to encompass circular, linear, and hyperbolic coordinate 

systems. The algorithm is commonly used to evaluate 

elementary functions as well as perform rotations in a 

variety of applications. However, it suffers from the 

problem of long latency. The Angle Recoding method [3] 

applied to CORDIC reduces the number of iterations, but 

the implementation of its angle selection function in 

hardware requires a large increase to the cycle time, thus, 

reducing its efficiency. This paper presents a simpler 

angle selection function for the Angle Recoding method 

which does not require the cycle time to be increased but 

still achieves the advantages of the reduction in iteration 

count. The technique is named ‘Adaptive CORDIC’. 

 

BASIC OF CORDIC ALGORITHM 

CORDIC algorithm is derived from the general equations 

of vector rotation. Vector rotation can also be used for 

polar to rectangular and rectangular to polar conversion, 

for vector magnitude and as a building block in certain 

transforms such as the DFT and DCT [5]. The CORDIC 

algorithm provides an iterative method of performing 

vector rotation by arbitrary angle using shift and adds. 

The algorithm credited to Volder is derived from the 

general rotation transform. If a vector V with co-

ordinates (x,y)  is rotated  through an angle Ø then a new 

vector V’ can be obtained with  co-ordinates (x’,y’) 

where x’ and  y’ can  be  obtained  using  x  ,  y  and Ø by  

the  following  method as shown in Fig.1. 

X=rcosθ,y=rsinθ  -------------------------------(1)                                                                                            

             
Fig 1 Rotation of a Vector V by the angle Ø  

V’ came into picture after anticlockwise rotation by an 

angle Ø. From Fig.1, it can be observed  Θ’-θ=Ø   

Therefore, 

     ………………..…(2) 

 
Fig 2 Vector V with magnitude r and phase θ 

The Original CORDIC algorithm is specified by the 

following iterative equations, with N denoting the 

number of iterations:  
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(ɣi=0,1,…..N) 

Xi+1=Xi-mσi2-S(m,i)Yi 

Yi+1=Yi + σi2S(m,i)Xi         ……………….…(3)                   

Zi+1=Zi-σiαm,i 

The parameter “m” denotes the coordinate system, i.e. 

circular (m=1), linear (m=0), or hyperbolic (m= -1). Two 

operational modes are possible, rotation and vectoring, 

but this paper is only concerned with the rotation mode 

where the initial position of the vector (X0; Y0) and the 

angle through which to rotate it (θ) are known, and the 

final coordinates of the target vector are to be 

determined. The goal is to reduce the residual angle (Zi) 

to 0 through the use of appropriate values of the rotation 

direction . σi=sign(Zi) 

The predetermined pseudo rotation angles α(m,i), 

sometimes known as angle constants or Arc Tangent 

Radices (ATR), are given by: 

 

II. LITERATURE REVIEW OF LOW LATENCY CORDIC 

TECHNIQUES 

The shift sequences is given by: 

S(m,i)=0,1,2,3,4,5,………………..N if m=1 

           =1,2,3,4,5,6,.........................N if m=0 

          =1,2,3,4,5,…………………...;N if m=1; 

         repeats at (3i+2-1)/2 

A scaling factorki is associated with the ith iteration step. 

 

The scaling factors are usually combined together and 

applied cumulatively as a total scaling factor K (for the 

N iterations) given by: 

 

The total scaling factor may be applied either at the start 

or at the end of the algorithm. As long as a rotation is 

performed on every iteration, K is a constant that is 

determined solely by the number of iterations, N. A fixed 

value for K eliminates the need for a ROM in which to 

store the different scaling factors for every possible 

angle. 

 The latency of an iterative algorithm like CORDIC is 

determined by the product of the number of iterations 

times the cycle time of each iteration. The Original 

CORDIC algorithm exhibits high and constant latency 

since the algorithm always requires a fixed number of 

iterations and there is no facility for early termination. 

There have been several methods proposed by 

researchers in an effort to reduce the overall latency of 

the algorithm. Huand Naganathan [3] propose the Angle 

Recoding method which can reduce the number of 

iterations by more than 50 percent—however, the angle 

selection function that is used is very complex, and in 

order to avoid impacting the cycle time, it is restricted to 

applications where the rotation angles are fixed and 

known a priori, so that the Angle Recoding can be done 

offline. In [4], an angle selection function inspired by 

control theory is presented which can be used 

dynamically with any rotation angle, but the savings 

obtained in iteration count is not as high as that of the 

Angle Recoding method.    

Another method of reducing the number of iterations is to 

use a higher radix number system, such as a minimally 

redundant radix-4 number system [5], [6], where�i can 

take on values off�2;�1;0;1;2g. The number of 

iterations is reduced, because more bits of the result are 

produced in each iteration. The cycle time needs to be 

increased because of the additional effort to identify the 

correct value of�i from among the five possible values. 

Duprat and Miller [7] take the tack of reducing the cycle 

time of a CORDIC iteration by using fast adders, based 

upon the use of redundant arithmetic to express the 

operands. The method proposed by Phatak [8] is able to 

execute two consecutive pseudorotations in the same 

cycle. It does this by examining a sliding window of six 

digits of the residual angle at a time, to predict the values 

of�i and�iþ1. In the Hybrid CORDIC [9] method, if 

m=ceilðN=3Þ, it is shown that after the first miterations 

have been executed sequentially, the residual angle that 

remains can be used to predict the rotation directions of 

the remaining N-miterations (roughly 2=3�N) in 

parallel. These iterations are then to be executed using 

the method shown in [10] or else by using some type of 

combined or pipelined architecture [11]. The first 

miterations can be speeded up by using the method 

proposed by Arbaugh [12] in which the rotation angle is 

used as an index into a ROM lookup table which 

provides two multiplication factors. The rotation of the 

vector is then performed by multiplying these factors by 
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the initial coordinates (x0,y0) of the vector to be rotated, 

in a standard multiplier.  

In the Para-CORDIC method [13] the sign of the first m 

iterations is predicted in parallel using the binary-to-

bipolar recoding on the first m bits of the rotation angle. 

In the P-CORDIC method [14], a preliminary step is used 

to predict the rotation directions, by adding a constant as 

well as a variable offset (obtained from a ROM) to the 

rotation angle, and then using a fast adder to obtain the 

required binary representation of the rotation directions. 

The knowledge of the rotation directions is used to 

perform more than one pseudo rotation in an iteration. In 

this paper, attention is focused mainly on techniques that 

reduce the number of iterations, while keeping the cycle 

time unchanged. An example of the Original CORDIC 

method is presented in this section. Some of the 

deficiencies of this method are pointed out, which are 

then addressed by Control CORDIC [4] and the Angle 

Recoding method [3]. 

Original CORDIC—Rotation through 25 Degrees 

Consider the rotation of a vector from the x-axis through 

an angle of, e.g., 25 degrees. Assuming that the rotation 

is to be accomplished in nine iterations (i.e. ,N=0...8), the 

set Q of predetermined angle constants that are used is as 

follows : 

Q= {450, 26.5650 , 14.0360 ,7.1250 ,3.5760 ,1.790, 0.8950,  

0.4480,0.22380} 

In the Original CORDIC method, the rotation through 25 

degrees is carried out by the following sequence of 

angular steps or pseudorotations, that add up to 

approximately 25 degrees, as shown on Fig. 1: 

250= {+450 - 26.5650 + 14.0360 - 7.1250 - 3.5760   +1.790 + 

0.8950 + 0.4480 + 0.22380} 

      = 25.12680. 

Even though the algorithm as a whole converges, 

individual intermediate pseudo rotations may diverge, 

and must be corrected by succeeding pseudo rotations. 

For example, the iteration from i=2 to i=3is a divergent 

pseudo rotation 

Angle Recoding Method—Rotation through 25 

Degrees 

The Angle Recoding method proposed by Hu and 

Naganathan [3] is a more aggressive algorithm. It 

eliminates divergent pseudo rotations and makes every 

effort to converge to the final target in the least number 

of iterations. At every iteration, the angle constant (�) 

that will bring the residual angle (Zi) closest to 0 is 

chosen from the set of available angle constants. For 

example, rotation through 

25 degrees in Fig. 1, 

250= ( 26.5650  -1.790 + 0.22380 ) 

=24.99880. 

This method results in a reduction of more than 50 

percent in the number of iterations needed. Its greatest 

disadvantage, however, is that the function used to select 

the angle constant is very complex. Its implementation 

requires the cycle time to be increased considerably(>2x). 

It is, therefore, most attractive in static cases where the 

rotation angleθ is fixed and known a priori. The selection 

of the angle constants can be done offline, and the angle 

constants saved in a Look-Up Table.  

 

Fig. 3. Angle selection in the Angle Recoding method. 

 

III. ADAPTIVE CORDIC TECHNIQUE BY DYNAMIC 

ANGLE SELECTION 

There is a strong motivation to investigate the use of 

dynamic angle selection techniques for Angle Recoding, 

because they can reduce the iteration count by more than 

50 percent, for any arbitrary rotation angle (not only 

those that are known a priori). A straightforward 

implementation of the Angle Recoding method in 

hardware is presented first. It requires a large increase in 

cycle time that makes its use in dynamic situations 

untenable. Then the Parallel Angle Recoding method is 

presented that performs the angle selection using a much 

simpler preparatory step, without having to modify the 

logic used in each iteration (thus requiring no change in 

the cycle time). 

Direct Hardware Implementation Of ADAPTIVE 

CORDIC Angle Recoding 

The Angle Recoding method can be implemented in 

hardware if all the angle constants (α’s) are tested in 

parallel, rather than serially as in the original algorithm. 

Fig. 3 shows the original Angle Recoding method and 

Fig. 4 shows the logic needed to implement it, so that it 

can handle any rotation angle dynamically. The residual 

angle Zi is passed to adder-subtractor units that compute 

the difference quantity (Zi-σiαi) for each angle constant 
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αi. The differences are then compared against each other 

using a binary-tree like structure, to find the smallest 

difference. The corresponding angle constant is selected 

and the index i of the angle constant (satisfying tan(α)=2-i 

) then determines the shift amount to be used. It is only 

then that the X and Y coordinates of the vector are 

updated. The adder-subtracters and binary tree 

comparison unit that are used in every iteration is on the 

critical path and greatly increases the cycle time. This 

mitigates the gains that accrue from the reduction in 

iteration count, leaving the latency unchanged or even 

larger than before. 

 

Fig. 4. Hardware implementation of the Angle Recoding 

method. 

 

IV. RESULT 

 

 

Fig. 5. Design Flow Summary 

 

 

Fig. 6 Folded RTL View Of Adaptive Cordic Technique 

 

 

Fig. 7 Unfoled RTL View Of Adaptive Cordic Technique 

 

 

Fig. 8 SRAM Object File Of Adaptive Cordic Architecture 
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Fig. 9 Simulation Result 

 

V. CONCLUSION 

The Angle Recoding method in CORDIC, reduces the 

number of iterations needed by more than 50 percent, but 

its use is restricted to applications where the rotation 

angle is known a priori. In order to apply the Angle 

Recoding method to arbitrary rotation angle, the angle 

selection component of the method must be simplified so 

that it can be implemented without requiring a large 

increase in cycle time. This paper has presented the 

Parallel Angle Recoding method that provides a simple 

way to identify the angle constants used in the Angle 

Recoding of arbitrary rotation angles. Several contiguous 

ranges are identified that are associated with each angle 

constant. By comparing the incoming rotation angle 

against these ranges, all the angle constants used in the 

Angle Recoding can be identified in a single step. The 

number of range comparators needed can be reduced by 

using the method of sections, but it does add some 

overhead cycles to the Adaptive CORDIC iteration count. 

The problem can be alleviated considerably by using a 

buffer in conjunction with sections. The buffer reduces 

the number of overhead cycles by allowing independent 

sections drawn from different rotation angles to follow 

each other through the pipeline. It also allows the 

compensation of the scaling factor to be carried out in 

parallel with the CORDIC iterations. The method can 

reduce the number of iterations needed, without requiring 

any increase in cycle time, it does, however, incur the 

overhead of the comparison logic. 
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